IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

General Yang-Baxterization of reflection equations and general K-matrices of An-l vertex

models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 4457
(http://iopscience.iop.org/0305-4470/27/13/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:26

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys, A: Math. Gen. 27 (1994) 4457-4463. Printed in the UK

General Yang—Baxterization of reflection equations and
general K-matrices of 4, _, vertex models

Hong-Cher Fut and Mo-Lin Ge}

T Institute of Theoretical Physics, Northeast Normal University Changchun [30024,
People’s Republic of China, and Theoretical Physics Divisjon, Nankai Institute of
Mathematics, Tianjin 300071, People’s Republic of China

t Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071,
People’s Republic of China

Received 11 November 1993

Abstract. General Yang-Baxterization of reflection equations for £ with two distinct eigen-
values is presented. This procedure is used to construct reflection K-matrices of refiection
equations for the A,_, vertex models, (Diagonal) X-matrices by de Vege and Gonzalez-
Ruiz for the 4,_, vertex model are reproduced. Furthermore, some new off-diagonal K-
matrices for the 4, vertex model are obtained.

1. Iniroduction

It is well known that the lattice integrable models with periodic boundary conditions
are described by the quantum Yang-Baxter equations. Recently, much attention has
been paid to the lattice integrable models with non-periodic boundary conditions [1-5].
This kind of integrable models is described by the quantum R matrix on the bulk and
by the reflection K-matrices K*(x) on the left and the right boundaries. If we know the
R and the reflection K-matrices we can immediately derive the integrable Hamiltonians
[L, 3. 9]. The quantum R-matrix satisfying the quantum Yang-Baxter equation has
been exlensively studied by many authors, Therefore, it is very important to study the
reflection K-matrices for constructing new integrable models with non-periodic bound-
ary conditions,

The reflection K-matrix K (x) satisfies the reflection equation (rg) proposed by
Cherednik and Sklyanin [1, 3]

Rxy™ KT () RC)KT(3) = KT (PRENKT ()R (xy™") (1.1)

where K1 (x)=K " (x}® 1. The K™ (x) can be obtained from K~ (x) in terms of a simple
transformation. Therefore. it is of significance to solve the re (1.1).

De Vega and Gonzalez-Ruiz [5] recently solved directly the re for six- and eight-
vertex models and the diagonal K-matrices of the 4,_; models. This method is more
complicated in practical calculations because we have to solve the set of functional
equations of the matrix elements of rRE (1.1).
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In this paper we shall propose a different method, calied the Yang-Baxterization
method, for finding K-matrices. The basic idea is to establish a procedure, called
Yang-Baxterization, to convert the parameter-independent reflection K-matrices, which
satisfy the parameter-independent RE

RKTRKT=KTRKTR (1.2)
into the parameter-dependent K-matrices. It is easy to see that this method enjoys the
following two merits:

(1) It simplifies the set of functional equations of the matrix elements of the
parameter-dependent Re (1.1) to the algebraic equations of matrix elements of the
parameter-independent rg (1.2). The latter has been extensively studied by Kulish ez
al [7]. We can therefore obtain a larger class of solutions to r& (1.1)

(ii) Using this method one can also obtain the algebraic solution of rE (1.1).
Sklyanin and Kulish introduced the algebraic structures related to the parameter-
independent re (1.2), which are known as the reflection algebras, In terms of the Yang-
Baxterization procedure these algebraic sofutions convert to parameter-dependent alge-
braic solutions of re (1.1).

The key point of our method is the Yang-Baxterization procedure. In section 2 we
shall present a general Yang-Baxterization procedure for R with two distinct eigen-
values. Note that in a previous letter [6] we have presented a Yang-Baxterization of
the rE for R with two distinct eigenvalues, which is in fact a special case of the results
in this paper. Then using this procedure we investigate the reflection K-matrices for the
A~y models. Results by de Vega and Gonzalez-Ruiz are easily reproduced in section
3, and some new off-diagonal K-matrices of 4,-, vertex model are obtained in section
4,

2. General Yang-Baxterization of the re

The R having two distinct eigenvalues ¢, £, can be Yang-Baxterized as [8]
R(x)=(x=x""R—(t; + t-)xI. 2.1)

So what we need to do is to incorporate the parameter x into parameter-independent
K-matrices such that they satisfy re (1.1). Considering the fact that all the constant
solutions for R having two distinct eigenvalues derived by Kulish er a/ [7] satisfy a
quadratic relation (K7)?+ 4K~ = C7, where 4, C e C[6], we can generally suppose that
K~ (x) depends only on the zeroth and first order of X~

K (x)=K™+f001 (2.2)

where f(x} is 2 function to be determined. Inserting (2.1} and (2.2} into (1.1), and using
sz(t, + tz)R #11.I, we find that

[R, (KT +D(x, )K7]=0 (2.3
where

~2y
Dis, yy LR = s £=x) ”
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Since x, y are arbitrary parameters, the function D{x, y) has to be a constant, which is
denoted by A. Then we have

SN =y )= 4y =f ()" - x77) — AX (2.5)

which has to be a constant B from the arbitrariness of x, y. From this equation we
obtain the final result

B+ AX*
fx)=—5—73 (2.6)
X —x
in which B is a free parameter and 4 is determined by
[R (K7’ +AK(]=0. @n
Let us consider a special case, If 8= A, then f(x) reduces to
Ax
fxy=——05 (2.8)
X—x

which is just the result presented in [6] (for X~ (x) up to x—xY.

We would like to note that the above presentation is also true for the algebraic
K-matrices if f{x) is a function of central elements of the reflection algebras (ra),
namely 4 is a central element of the ra. This means that the algebraic solutions of
s1(2), (see next section) and su(1, 1), models can be Yang-Baxterized by means of the
above procedure.

3. K-matrices of the six~-vertex model

We now apply the above procedure to the construction of general K-matrices for the
A,— models. We first consider the six-vertex model in this section. Results by de Vega
and Gonzalez-Luiz are reproduced.

The R matrix for six-vertex models reads

R= o=g—q". (3.1)

q

From (2.1} (with ty=¢, = —¢~") we get its well known parameter-dependent form
(up to xg = (xg)™")

1 x—x"

] a=
bx7' a xq—(xq)
a bx @
1 b
xq—(xq)

R(x)= (3.2)



4460 Hong-Chen Fu and Mo-Lin Ge

Letting
__{r B)
K™= 3.3
(a 3 ©-3)
we obtain the algebraic relations of the reflection algebra o,
Sa=qaé (8, 7]=0 [a, ¥Y]=-¢ 'oda

8B=q'Bs [a, Bl=¢ ' @(67- &% 8, 1=¢"'0By. (3.4
This algebra has two central elements

Ci=6+g"y Cy=det, K" =8y - ¢'Ba,
satisfying the relation

(K)'-¢7CK = -¢7G. (3.3)

This means that we can choose A=—¢"°C), and therefore the algebraic solution is
Yang-Baxterized as

B— (g% + p)¥ ;

K (x)=K "+ P (3.6)
There are two constant solutions. Besides the identity solution, the other one reads
K‘=(" A ) 3.7)
a 0
with three free parameters &, 8, . Then we have (up to x> —x™?)
e [ B=yx"? B(x*—x7H)
K (x)_(a(xz—x"z) By | (3.8)

To produce the result in [5], we rearrange the parameters as B=y exp(—2&),
x=exp(8). Then equation (3.8) is rewritten as

oo (ksinh(E—6)e”®  usinh(26) )
K (6)_( psinh(20) Kk sioh( £+ 0)e®

with k= —2ye™%, =28, n=2a. In comparison with the result in [5], there are two
additional factors e*% in the diagonal elements. This is because the R matrix we use is
different from that in [5] and these factors can be cancelled by a gauge transformation.

Here we would like to note that the K (x) given above also includes the identity
solution (up to any function F(x) about x) by setting a=f=7y=0.

(3.9)

4, K-matrices of A,_, models

The diagonal K-matrix by de Vega and Gonzalez-Ruiz for the 4,-, model can be easily
derived from the following constant solution of rE (1.1)

. iflgig
K_U)f{a,j if1<ig?

o H1e1Sren (I=1,2,...,n) 4.1
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where the R for the 4,-, model reads

R= gy eRes+ ¥ giRe i+ ¥ e,®e;. (4.2)

i Pk i<
Itis easy to see that (K~ (/))* — K (/) =0and 4= — 1. Therefore, its Yang-Baxterization
is derived as

8,(B=x"%) if 1<i<!

4.3
5,(B—x%) ifl+1<ign. (4.3)

K™ (x,1);= {

Redefining the parameters as in the A, case we get the diagonal K-matrix in [6] (uvp to
—2p ¢ )

8;; sinh{ £ — G)e™? if1<ig!

5y sinh( &+ 8)e’ ifl+1gisn (44

K-(Bs !)r_,r={

We have seen that we can easily obtain the K-matrices by our Yang-Baxterization
formulism. By means of this procedure solving the parameter-dependent rRE reduces to
solving the parameter-independent RE, in other words, solving the functional equations
reduces to solving the algebraic equations. Therefore, we can deal with a larger class
of K-matrices, not only the A,., model but also the su (1, 1} and eight-vertex models.
In particular, we can also deal with the algebraic solutions as shown in the case of the
six-vertex model presented in section 3. Now we present some off-diagonal K-matrices
fgr A, models. To use directly the constant solutions presented in [7], however, the
R we now use is a bit different from equation (4.2), namely the last term becomes
Wi e,Re,.

For the A; model there are two constant solutions with non-vanishing determinants,
one is the identity solution, the other one is

where g3 = daa(aa — a33) /a3 It is easy to verify that
(K™Y —anK =angul A= —a. (4.5)

Therefore, they can be Yang-Baxterized as

B— 6133.7&'2
-_— a
x:_x_z 13
_ B-~aux
K (x)= ag+ _;3_2 (4.6)
B 133 x_z
& P-x7

which includes five free parameters, x, a3, @2, @33 and B.
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For the 4; model, besides the unity solution, the following two constant solutions
with non-vanishing determinants were presented in [7]:

14 a4

- a2 - aze
K (0= K {I)=
© a3 xn () (175}

84 a3 ay 844

where gy =anap/a14 and gaa= a2 — (2iaa41) /az . Both solutions can be combined as

@14 A=M22+(] —R)a;;
- _ Aaz (1—A)ax _ _
K (ﬁ.)— (I —1)&52 A r J{a,u + (1 A.)g‘gl
r A A=(1"ﬁ,)a33+lg44
(4.7)

in terms of a discrete parameter A=0, 1. One can prove that
KNP —AK (D) =[(1 - Manas; + Aasauf (4.8)

namely, A =A. Then we can Yang-Baxterize the solution K™ (2) as

= 214
E+Aan (1—axn

K(x, B, A= (1-ax E+A

B—Ax
2 4.9)

(1]

X—x"
which includes eight continuous parameters, x, B, a4, g2z, 023, @32, @33, G4y, and a
discrete parameter A.

For si,(n), there also exists an off-diagonal constant solution K~ with matrix
elements

K;=5;,,+|_,-. (410)
This solution satisfies (K ~)*=1, then 4=0. Therefore, its Yang-Baxterization is
- B
K (xa B)z;=5m'rl-r+ﬁ6ijn (4.11)
X —x

5. Concluding remarks

We point out that in the above presentation only the 4, case is the general K-matrix
because it is derived from all the consiant solutions. For the cases 4; and 45, we
only considered the constant solutions with non-vanishing determinants (including the
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identity solution), and for the 4, case, we only present an example of off-diagonal
K-matrix.

To obtain the general K-matrix we have to consider all the constant solutions. One
first mixes up all the constant solutions in a general form in terms of a set of discrete
parameters as shown in the A; case, then obtain its parameter-dependent form using
the Yang-Baxterization procedure. Since we usually have more than one constant solu-
tion, the parameter-dependent X-matrix includes not only the continuous but also the
discrete parameters.

For the A,-, case we can add a set of parameters to the constant solutions through
the parameter-dependent transformation {for details, see [7]). For instance, we can get
a counter-constant solution involving n/2 or (n—1)/2 parameters from the solution
(4.10). Therefore, some additional parameters will enter the general K-matrices.

The associaled integrable Hamiltonians can be derived from

tro[ K3 (g™ z)hm}

K (@] G-

N—-1
H= c{ > h,,,,+,+%fé;(0)+

=1
where C is an arbitrary constant and
htm+l = erH(o) . (52)

However, since the & matrix for the A4,_, model does not enjoy the £, T'and the crossing
symmetry, K (x) is not equal to K~ (x), but can be obtained from K~ (x) by

KYx)y=K"(x""'¢)'M. (5.3)
where
M= 8 g™ 2! 1<a, b<n. (5.4)

Then the jntegrable Hamiltonians related to the boundary conditions presented above
can be easily derived.
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