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Abstract. General Yaw-Baxterization of reflation equations for 8 with two distinct eigen- 
values is presented. This procedure is used to construct reflection K-malriccs of reflection 
equations for the A"., vertex models. (Diagonal) K-matrices by de Vege and Godlez- 
Ruiz for the A,,., vertex model are reproduced, Furthermore, some new off-diagonal K- 
matrices for the A,,.l vertex model are obtained. 

1. Introduction 

It is well known that the lattice integrable models with periodic boundary conditions 
are described by the quantum Yang-Baxter equations. Recently, much attention has 
been paid to the lattice integrable models with non-periodic boundary conditions [ 1-51, 
This kind of integrable models is described by the quantum d matrix on the bulk and 
by the reflection K-matrices K*(x)  on the left and the right boundaries. If we know the 
R and the reflection K-matrices we can immediately derive the integrable Hamiltonians 
[ I ,  3,9]. The quantum R-matrix satisfying the quantum Yang-Baxter equation has 
been extensively studied by many authors. Therefore, it is very important to study the 
reflection K-matrices for constructing new integrable models with non-periodic bound- 
ary conditions. 

The reflection K-matrix K ( x )  satisfies the refection equation (RE) proposed by 
Cherednik and Sklyanin [ 1,3]  

ri(xy-')K;(x)R(xy)K;(y) = K;(y)Rl(xy)K;(x)Rl(xy-') (1.1) 

where K ; ( x )  = K - ( x ) @  1. The K + ( x )  can be obtained from K - ( x )  in terms of a simple 
transformation. Therefore. it is of significance to solve the RE (1.1). 

De Vega and Gonzilez-Ruiz [ 5 ]  recently solved directly the R E  for six- and eight- 
vertex models and the diagonal K-matrices of the A,,-! models. This method is more 
complicated in practical calculations because we have to solve the set of functional 
equations of the matrix elements of RE (1.1). 
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In this paper we shall propose a different method, called the Yang-Baxterization 
method, for finding K-matrices. The hasic idea is to establish a procedure, called 
Yang-Baxterization, to convert the parameter-independent rcflcction K-matrices, which 
satisfy the parameter-independent R E  

~ K ; R K ;  = K;RIK;R ( 1.2) 

into the parameter-dependent K-matrices. I t  is easy to see that this method enjoys the 
following two merits: 

(i) It simplifies the set of functional equations of the matrix elements of the 
parameter-dependent RE (1.1) to the algebraic equations of matrix elements of the 
parameter-independent RE (1.2). The latter has been extensively studied by Kulish et 
a l [7] .  We can therefore obtain a larger class of solutions to RE (1.1) 

(ii) Using this method one can also obtain the algebraic solution of RE (1.1). 
Sklyanin and Kulish introduced the algebraic structures related to the parameter- 
independent RE (I .2), which are known as the reflection algebras. In terms of the Yang- 
Baxterization procedure these algebraic solutions convert to parameter-dependent alge- 
braic solutions of RE (1.1). 

The key point of OUT method is the Yang-Baxtenzation procedure. In section 2 we 
shall present a general Yang-Baxterization procedure for i with two distinct eigen- 
values. Note that in a previous letter [6 ]  we have presented a Yang-Baxterization of 
the RE for k with two distinct eigenvalues, which is in fact a special case of the results 
in this paper. Then using this procedure we investigate the reflection K-matrices for the 
Am-l models. Results by de Vega and Gonzilez-Ruiz are easily reproduced in section 
3, and some new of-diagonal K-matrices of An-l  vertex model are obtained in section 
4. 

2. General Yang-Baxterization of the RE 

The k having two distinct eigenvalues f,, f2 can be Yang-Baxterized as [SI 

So what we need to do is to incorporate the parameter x into parameter-independent 
K-matrices such that they satisfy RE (1.1). Considering the fact that all the constant 
solutions for having two distinct eigenvalues derived by Kulish et a/ [7] satisfy a 
quadratic relation (K-)*+ AK- = U, where A ,  C EC[~] ,  we can generally suppose that 
K-(x) depends only on the zeroth and first order of K- 

wheref(x) is a function to be determined. Inserting (2.1) and (2.2) into (].I), and using 
/?=( t1+t2)k- t l t21 ,  we find that 

where 
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Since x, y are arbitrary parameters, the function D(x,  y )  has to be a constant, which is 
denoted by A. Then we have 

f( y)( yZ-y-2) - AyZ=f(x)(x2- .U+) - ' 4 X 2  (2 .5)  

which has to be a constant B from the arbitrariness of x , y .  From this equation we 
obtain the final resuft 

B+ ~2 f(4 = 

in which B is a free parameter and A is determined by 

[d, ( K ; ) * + A K ; ]  = 0. (2.7) 

Let us consider a special case. If B = A ,  thenf(x) reduces to 

Ax fW=- x - x-I 

which is just the result presented in [6] (for K - ( x )  up to .r-Y'). 
We would like to note that the above presentation is also true for the algebraic 

K-matrices iff(x) is a function of central elements of the reflection algebras (RA), 
namely A is a central element of the RA. This means that the algebraic solutions of 
sl(2), (see next section) and su( 1, I), models can be Yang-Baxterized by means of the 
above procedure. 

3. K-matrices of the six-vertex model 

We now apply the above procedure to the constrnction of general K-matrices for the 
A.-l models. We first consider the six-vertex model in  this section. Results by de Vega 
and GonzPlez-Luiz are reproduced. 

The d matrix for six-vertex models reads 

From (2.1) (with f l  =q, f2= -4-l) we get its well known parameter-dependent form 
(UP to xq-  (xq1-I) 
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Letting 

(3.3) 

we obtain the algebraic relations of the reflection algebra d l  

6a =q-2a6 [& y l=  0 [a,  y ] =  -q-'@.Ga 

sp=q2PG [a, p] =q- 'w(Gy-  6') IPS rl =q-'wPY. (3.4) 

This algebra has two central elements 
C 1 = 6 + q 2 y  C2=detq K - = 6 y -  $Pa,  

satisfying the relation 

(K-) ' -q-ZC1K-= -q-1c2. (3.5) 
This means that we can choose A= -q-2Cl, and therefore the algebraic solution is 
Yang-Baxterized as 

I 
B -  (q-%+ y ) 2  
2 - 2 - 2  

K-(.r) = K -  + (3.6) 

There are two constant solutions. Besides the identity solution, the other one reads 

with three free parameters a, p ,  y.  Then we have (up to ?-x-~)  

(3.7) 

To produce the result in [ 5 ] ,  we rearrange the parameters as B=yexp(-25), 
x=exp(B). Then equation (3.8) is rewritten as 

(3.9) 
k sinh( 5-  @e-' 

K - ( g ) = (  q sinh(2B) k 

with k=-2ye-5, p=2p,  q=2a.  In  comparison with the result in [ 5 ] ,  there are two 
additional factors e*' in the diagonal elements. This is because the matrix we use is 
different from that in [ 5 ]  and these factors can be cancelled by a gauge transformation. 

Here we would like to note that the K ( x )  given above also includes the identity 
solution (up to any function F ( x )  about x) by setting a=P= y=O. 

4. K-matrices of An- models 

The diagonal K-matrix by de Vega and Gonzllez-Ruiz for the An- I model can be easily 
derived from the following constant solution of RE (1.1) 

if 1 < ( $ I  
if[+ 1 $i<n ( I =  1,2,. . . , n )  
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where the !? for the A, - ,  model reads 

Itiseasytosee that (K-(/))'-K-(l)=Oand A =  -].Therefore, itsYang-Baxterization 
is derived as 

(4.3) 

Redefining the parameters as in the A ,  case we get the diagonal K-matrix in [6] (up to 
- 2e-5 ) 

6, sinh( 5 - 6)e-O 
~ 5 ; ~  sinh( 5 + @e' 

if 1 si</ 
i f l + i < i < n '  r ( e ,  [I,,= (4.4) 

We have seen that we can easily obtain the K-matrices by our Yang-Baxterization 
formulism. By means of this procedure solving the parameter-dependent RE reduces to 
solving the parameter-independent RE. in other words. solving the functional equations 
reduces to solving the algebraic equations. Therefore, we can deal with a larger class 
of K-matrices, not only the Am-l model but also the mq( 1, I) and eight-vertex models. 
In particular, we can also deal with the algebraic solutions as shown in the case of  the 
six-vertex model presented in section 3. Now we present some off-diagonal K-matrices 
for An-l models. To use directly the constant solutions presented in [7], however, the 
!? we now use is a bit different from equation (4.2). namely the last term becomes 
coCj>je,,@e,,. 

For the A2 model there are two constant solutions with non-vanishing determinants, 
one is the identity solution, the other one is 

where g3] =a22(a22-a33)/a13.  It is easy to verify that 

(K-)2-a33K-=a13g3,1 A =  - u ~ J .  

Therefore, they can be Yang-Baxterized as 

B-a33x2 i .  T2 - x-2 

(4.5) 

a13 \ 
B - a33 x' 

2-x-' 
K-(x)= a22 + 

5- u33x-2 

2 - x-2 

(4.6) 

which includes five free parameters, x, a K 3 ,  u22, and 5. 
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For the A, model, besides the unity solution, the following two constant solutions 
with non-vanishing determinants were presented in [7] : 

where grl =a~u12/a14 and g44=a22-(a14a41)/a12. Both solutions can be combined as 

(4.7) 

[ K - ( ~ ) I ~ - A K - ( ~ )  = [(I  - ~ ) u ~ ~ ~ , ~ + ~ ~ ~ ~ ~ ~ I I  (4.8) 

in terms of a discrete parameter I = O ,  1. One can prove that 

namely, A =A.  Then we can Yang-Baxterize the solution K ( A )  as 

(4.9) 

which includes eight continuous parameters, x, E ,  uI4, u22, a2,, a j2 ,  a3) ,  a4,, and a 
discrete parameter 1. 

For dq(n) ,  there also exists an off-diagonal constant solution K- with matrix 
elements 

K ;  = 8in+l-i.  (4.10) 

This solution satisfies (K-)’=I,  then A =O.  Therefore, its Yang-Baxterization is 

5. Concluding remarks 

We point out that in the above presentation only the A I  case is the general K-matrix 
because it is derived from all the constant solutions. For the cases A2 and A, ,  we 
only considered the constant solutions with non-vanishing determinants (including the 
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identity solution), and for the A.-1 case, we only present an example of off-diagonal 
K-matrix. 

To obtain the general K-matrix we have to consider all the constant solutions. One 
first mixes up all the constant solutions in a general form in terms of a set of discrete 
parameters as shown in the Af case, then obtain its parameter-dependent form using 
the Yang-Baxterization procedure. Since we usually have more than one constant solu- 
tion, the parameter-dependent K-matrix includes not only the continuous but also the 
discrete parameters. 

case we can add a set of parameters to the constant solutions through 
the parameter-dependent transformation (for details, see [71). For instance, we can get 
a counter-constant solution involving n/2 or (n- 1)/2 parameters from the solution 
(4.10). Therefore, some additional parameters will enter the general K-matrices. 

For the 

The associated integrable Hamiltonians can be derived from 
IN-, 

where Cis an arbitrary constant and 

h",+I =&,+1(0). (5.2) 

However, since the 
symmetry, K'(x) is not equal to K - ( x ) ,  but can be obtained from K - ( x )  by 

matrix for the An-]  model does not enjoy the P, Tand the crossing 

K'(x)  = K - ( X - ' ~ / ~ ) ' M .  ( 5 . 3 )  

Mab= 6ebq"-2a" 1 <a, b g n .  (5.4) 

where 

Then the integrable Hamiltonians related to the boundary conditions presented above 
can be easily derived. 
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